skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siegert, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Presolar graphite grains carry the isotopic signatures of their parent stars. A significant fraction of presolar graphites show isotopic abundance anomalies relative to solar for elements such as O, Si, Mg, and Ca, which are compatible with nucleosynthesis in core-collapse supernovae (CCSNe). Therefore, they must have condensed from CCSN ejecta before the formation of the Sun. Their most puzzling abundance signature is the22Ne-enriched component Ne-E(L), interpreted as the effect of the radioactive decay of22Na (T1/2= 2.6 yr). Previous works have shown that if H is ingested into the He shell and not fully destroyed before the explosion, the CCSN shock in the He-shell material produces large amounts of22Na. Here we focus on such CCSN models, showing a radioactive26Al production compatible with grain measurements, and analyze the conditions of22Na nucleosynthesis. In these models,22Na is mostly made in the He shell, with a total ejected mass varying between 2.6 × 10−3Mand 1.9 × 10−6M. We show that such22Na may already impact the CCSN light curve 500 days after the explosion, and at later stages it can be the main source powering the CCSN light curve for up to a few years before44Ti decay becomes dominant. Based on the CCSN yields above, the 1274.53 keVγ-ray flux due to22Na decay could be observable for years after the first CCSN light is detected, depending on the distance. This makes CCSNe possible sites to detect a22Naγ-ray signature consistently with the Ne-E(L) component found in presolar graphites. Finally, we discuss the potential contribution from22Na decay to the Galactic positron annihilation rate. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  2. ABSTRACT The nucleosynthesis in classical novae, in particular that of radioactive isotopes, is directly measurable by its γ-ray signature. Despite decades of observations, MeV γ-rays from novae have never been detected – neither individually at the time of the explosion, nor as a result of radioactive decay, nor the diffuse Galactic emission from the nova population. Thanks to recent developments in modelling of instrumental background for MeV telescopes such as INTEGRAL/SPI and Fermi/GBM, the prospects to finally detect these elusive transients are greatly enhanced. This demands for updated and refined models of γ-ray spectra and light curves of classical novae. In this work, we develop numerical models of nova explosions using sub- and near-Chandrasekhar CO white dwarfs as the progenitor. We study the parameter dependence of the explosions, their thermodynamics and energetics, as well as their chemical abundance patterns. We use a Monte Carlo radiative transfer code to compute γ-ray light curves and spectra, with a focus on the early time evolution. We compare our results to previous studies and find that the expected 511-keV-line flash at the time of the explosion is heavily suppressed, showing a maximum flux of only $$10^{-9}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$$ and thus making it at least one million times fainter than estimated before. This finding would render it impossible for current MeV instruments to detect novae within the first day after the outburst. Nevertheless, our time-resolved spectra can be used for retrospective analyses of archival data, thereby improving the sensitivity of the instruments. 
    more » « less
  3. ABSTRACT Reticulum II (Ret II) is a satellite galaxy of the Milky Way (MW) and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain γ-ray fluxes from Ret II and compare those with expectations from DM. Ret II is not detected in the γ-ray band 25–8000 keV, and we derive a flux limit of $${\lesssim}10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}}$$. The previously reported 511 keV line is not seen, and we find a flux limit of $${\lesssim}1.7 \times 10^{-4}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$$. We construct spectral models for primordial black hole (PBH) evaporation and annihilation/decay of particle DM, and subsequent annihilation of e+s produced in these processes. We exclude that the totality of DM in Ret II is made of a monochromatic distribution of PBHs of masses $${\lesssim}8 \times 10^{15}\, \mathrm{g}$$. Our limits on the velocity-averaged DM annihilation cross section into e+e− are $$\langle \sigma v \rangle \lesssim 5 \times 10^{-28} \left(m_{\rm DM} / \mathrm{MeV} \right)^{2.5}\, \mathrm{cm^3\, s^{-1}}$$. We conclude that analysing isolated targets in the MeV γ-ray band can set strong bounds on DM properties without multi-year data sets of the entire MW, and encourage follow-up observations of Ret II and other dwarf galaxies. 
    more » « less